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ABSTRACT
Distributed software using MPI is now facing a complexity barrier.
Indeed, given increasing intra-node parallelism, combined with the
use of accelerator, programs’ states are becoming more intricate. A
given code must cover several cases, generating work for multiple
devices. Model mixing generally leads to increasingly large pro-
grams and hinders performance portability. In this paper, we pose
the question of software composition, trying to split jobs in multiple
services. In doing so, we advocate it would be possible to depend on
more suitable units while removing the need for extensive runtime
stacking (MPI+X+Y). For this purpose, we discuss what MPI shall
provide andwhat is currently available to enable such software com-
position. After pinpointing (1) process discovery and (2) Remote
Procedure Calls (RPCs) as facilitators in such infrastructure, we
focus solely on the first aspect. We introduce an overlay-network
providing whole-machine inter-job, discovery, and wiring at the
level of the MPI runtime. MPI process Unique IDentifiers (UIDs)
are then covered as a Unique Resource Locator (URL) leveraged
as support for job interaction in MPI, enabling a more horizontal
usage of the MPI interface. Eventually, we present performance
results for large-scale wiring-up exchanges, demonstrating gains
over PMIx in cross-job configurations.

CCS CONCEPTS
• Networks → Peer-to-peer protocols; Network experimen-
tation; • Computer systems organization→ Fault-tolerant net-
work topologies; Interconnection architectures.
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1 INTRODUCTION
The Message Passing Interface (MPI) is crucial in the software stack
of any supercomputer. Indeed, the need for improved processing
requires the ability to coordinate multiple nodes. For this purpose,
MPI has evolved over the years to respond to all the needs expressed
by the High-Performance Computing (HPC) community. Its ability
for evolution is no stranger in the long-lasting availability of MPI –
recently celebrating its 25 years. Providing bare-metal performance
on specific hardware while acting as a portable mediation layer
now deeply embedded in scientific code-bases is a root cause of
this state of things. Among others, MPI has evolved to provide
improved non-blocking collectives[10], added support for shared-
memory windows[9], and last but not least for MPI Sessions[11] –
completely changing how MPI launches itself. Conjointly, the way
of addressing the MPI process remained unchanged since the first
version of the standard: MPI process ranks are identified by a 32 bits
integers part of a given communicator. As far as communicators
are concerned, they used to be relatively static, mostly a subset
of the main MPI_COMM_WORLD communicator. However, sessions
now enable the immediate creation of arbitrary communicators
thanks to a new naming mechanism – the process-set (pset) name.
These changes open wider connectivity opportunities between MPI
processes and pose issues to runtimes that may now lack internal
addressing capabilities, being tailored for the world model.

These recent MPI evolutions are responding to an increasing
hardware pressure for composability. Indeed, MPI is now generally
collocated with a shared-memory model such as OpenMP, span-
ning devices of different kinds (CPUs, GPUs). In this heterogeneous
landscape, a static MPI_COMM_WORLD is insufficient: a program may
be the composition of several jobs. In the first part of this paper,
we motivate such application deployment that we call service ori-
ented HPC. In particular, we identify process discovery and remote
procedure calls as tools, respectively incomplete and lacking in
MPI. We then outline the rich client-server model already avail-
able in MPI. Subsequently, we develop the requirements associated
with inter-job wiring and focus on process discovery, which is not
fully addressed by existing process management interfaces. For
this purpose, we introduce our contribution leveraging an overlay
network[16] connecting all MPI processes of a given user, provid-
ing machine-wide wiring and side-channel capabilities to MPI. This
network is presented in the context of the MPC MPI[3, 18] runtime.
By combining the overlay network and dedicated addressing ca-
pabilities (Unique IDentifiers for each process) we describe how
we robustly build cross-job communicators. Moreover, we show
how we leverage routed remote procedure calls (RPCs) to enable
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Figure 1: Illustration of GPU only computation with CPU
only acting as coordinator for data-movements.

on-demand connectivity allowing our MPI runtime to start fully-
disconnected (on the high-speed network side). Eventually, we com-
pare our approach with PMIx[5] and demonstrate improvements in
some configurations (sparse connectivity). We then conclude with
future applications we envision for the overlay network.

2 EVOLVING CONSTRAINTS
High-Performance Computing is going through important evolu-
tion in terms of hardware. The tendency for hybridization is con-
firming itself: hardware will be fragmented from now on in special
units[8, 15, 22]. In such diverse environment, programming a single
program dedicated to multiple computing units is not trivial and
can lead to inefficiencies. Indeed, if a single portion of the code is
not fully scaling, for example due to fork-join overheads, the whole
application is subject to partial speedup bounding[4]. Therefore,
if alternating between node-level and inter-node parallelism was
difficult for MPI+X; it will be close to impossible in MPI+X+Y. Our
take on this challenge is core specialization instead of trying to map
a given code to an overly complex machine topology. Rather of a
single program taking care of the whole computation, alternating
between linear algebra and Inputs/Outputs – we propose to move
individual processing to the most suitable units while being serviced
to the other processes.

2.1 Service Oriented HPC
As illustrated in Figure 1, one may consider BLAS on the GPU and
I/O burst buffer taking advantage of the node’s main memory while
preserving computational matrices in a shared-window mapped
to the node-local High-Bandwidth Memory (HBM) tying both the
GPU and the CPU to a single common address space. Using this con-
figuration, one can see that the CPU is idle during the linear algebra
phase. It is of course possible to enhance this code. Practically split-
ting the work between the two devices would need a mix of tasks
and certainly, OpenMP targets[6] creating nested parallelism re-
gions. It means a single program has to encompass multiple devices
and therefore stack multiple states to accommodate the various
devices. If we now consider the alternate service-oriented approach

Figure 2: Computation of Figure 1 outlined in a service-
oriented manner.

for Figure 2, the control flow is more consistent. Indeed, instead
of having control going back and forth between the various com-
puting units, arrows are now closer to tasks carrying both data
and a given processing order on these data. Moreover, in this il-
lustrative example, we now have two services located on the CPU,
I/O and MPI Ghost-Cell exchanges. These two services are sim-
pler than the original code, which had to maintain multiple states.
They expect a given order, trigger their operation, respectively
ghost-cells exchanges and I/O storage, and then report for comple-
tion. Besides, the machine’s scheduler can be sufficient to enable
resource sharing between these two components without having
to explicit alternated control flows unlike in Figure 1. In HPC, this
horizontal scaling of applications is not common, in-situ[7], ad-hoc
services[25] and work-flow oriented schedulers such as Flux[1] are
pioneering these original configurations. More practically, look-
ing at how the Internet is structured and able to scale, we have a
convincing analogy of what we try to bring in this initial example.

2.2 Summary
Overall, coordinating simpler components instead of encompassing
all the cases in an omniscient code leads to immediate code simpli-
fications. First, in terms of components that can do only one thing,
and more importantly the global state is now decoupled. Compo-
nents interact in point-to-point without remote state assumption.
Moreover, a given service could be shared between multiple jobs
to increase its load. This aspect is at the core of this paper as our
contribution focuses on enablingmachine-wide MPI process discov-
ery and wiring. As far as communications are concerned, doing so
with MPI as of today is perfectible. Indeed, MPI is mostly relying,
for good performance reasons, on two-sided messages which nec-
essarily lead to a known remote state. Of course, one may consider
looping over receives using MPI_ANY_SOURCE to process incom-
ing data but it would make poor use of MPI’s potential. Another
approach would be to rely on one-sided operations using target
notification thanks to a flag constantly monitored by the target
code but this might not be portable to all hardware (GPUs, ...) and
would waste computing cycles due to the active waiting in user

28



Enabling Global MPI Process Addressing in MPI Applications EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA

space. In short, what is discussed in the watermark here to empower
such scenarios is active messages backed up by the MPI runtime for
efficiency and portability. Such a paradigm using, for example, the
Mercury RPC framework[21, 24] or eRPC[14] is already gaining
traction in massively parallel task engines and I/O frameworks[25].

3 COMPOSITION IN MPI
One of our main goals in this paper is to enhance the composabil-
ity of MPI programs enabling cross-job MPI process interactions.
However, it would be inexact to ignore what the standard already
proposes. Indeed, MPI has a rich client-server model enabling two
groups of processes to discover themselves and exchange data using
regular MPI messages. There are three main approaches, (1) gath-
ering processes through an intermediate substrate (file-descriptor
or Port) and (2) spawning a new set of processes to interact with or
(3) relying on Multiple-Program Multiple-Data launch. These are
presented here mostly as related-work, contextualizing what MPI
is already capable of.

3.1 MPI Connect/Accept

Figure 3: Sample client-server MPI sequence diagram using
Connect/Accept

As depicted in Figure 3, process discovery is done using a port
in MPI. A port can be published by a given process and then
queried by another. Such port establishes a common ground to build
an inter-communicator between the two sets of processes using
MPI_Comm_connect and MPI_Comm_accept – yielding a new inter-
communicator. Unlike their counterpart, intra-communicators, inter-
communicators are bipartite structures enabling two groups of pro-
cesses to communicate. In this case, messages’ ranks are relative
to the remote communicator group. Besides, collective commu-
nications have another semantic. Alternatively, MPI_Comm_join
enables two processes to join their groups thanks to a common
file-descriptor. It has a similar outcome as previously described
connect/accept despite using a different substrate and limiting in-
teraction with a single remote process.

As far as the scoping of the service name is concerned, it is
implementation-dependent and varies from a single job to thewhole
machine depending on support. It can then be cumbersome to

write portable code using this semantic. Consequently, the two
methods covered in upcoming sections gained more traction. In this
paper, we implement a dedicated overlay network to guarantee this
scoping is machine-wide for a given user – making connect/accept
more portable.

3.2 Spawning Processes
The MPI_Comm_spawn procedure is another way of enabling com-
position in MPI. This call leverages the infrastructure to allocate a
new set of processes within the limit of the universe size, which
is implementation-dependent. When a given process is spawned
with its command line and given the number of slots, the resulting
configuration is also an inter-communicator, which can be retrieved
by invoking MPI_Comm_get_parent on the child processes. This ap-
proach typically relies either on the batch-manager or pre-allocated
resources to provide extra on demand processes. It has the advan-
tage of controlling process startup: necessarily creating a notion
of inheritance between jobs (same user). In practice, the Process
Management Interface (PMI) instructs the batch manager to allo-
cate new processes with a spawn command. Then, the wiring is a
special case of Connect/Accept with implicitly shared parameters.

3.3 MPMD Programs
Up to MPI 4.0, The most common manner used to start multiple pro-
grams in the same MPI environment is the Multiple Program Mul-
tiple Data (MPMD) launch facility. It means that different binaries
are passed to the mpiexec command using the non-mandatory “:”
separator. Implementation is transparent to the MPI library: these
processes end up, given the world-model, in MPI_COMM_WORLD with
a linear MPI process ranking – just as if there was a single binary
at play. Consequently, MPMD applications must be aware of their
collocated nature to build the corresponding communicators. MPI
provides an attribute MPI_APPNUM on MPI_COMM_WORLD, it can be
used as the split value to create a communicator for each appli-
cation. With some extra logic, sizes and ranges can be exchanged
for the various MPMD programs to enable later computation. Be-
sides, in complement of the aforementioned world-model, MPI 4.0
brought the new Session model which allows processes to start
disconnected. With Sessions, communicators for the various appli-
cations can then be started from a given process-set, for example,
app://ocean.

The relative simplicity of MPMD in terms of implementation
combined with its portability made this model of composition
prominent in terms of MPI usage.

3.4 Summary
In the light of previous discussions, we have seen that the MPI
standard already supports inter-job wiring. It can be achieved, first
between separate jobs using Connect/Accept (or a file-descriptor)
as the most general technique. Otherwise, a given program may
spawn its processes. However, it is of limited use in the case of
planable resources (e.g. side-support service), meaning that the
most suitable model is MPMD – launching two distinct programs in
the same communication domain. Yet, in the later case, the service
instance would be limited to a single job. Connect/Accept then
seems to be a good avenue to achieve more dynamic configurations
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Figure 4: Example of two applications sharing the same I/O
backend

such as the one presented in Figure 4. Such configuration is already
used in today’s systems: I/O services like GekkoFS[25] provide
such support thanks to the Mercury RPC engine[21, 24], enabling
multiple applications to share the same ad-hoc file-system. The
questions is then how can MPI reliably expose such facility? Why
current support despite its diversity is not leveraged? For example
dynamic processes were judged as the most useless feature of MPI
in a recent survey[2, 12].

3.5 Related Work
In this paper, we try to make the process-discovery mechanism
more portable in MPI; this while outlining what MPI needs to pro-
vide such a facility. In particular, we propose a dedicated process
discovery architecture fully integrated into the MPI library, en-
abling portable process discovery indifferently from the underlying
batch system or PMI version. On this aspect, it is crucial to under-
line that PMI(x)[5] is evolving as a standard1 and that it is close
to providing the same facilities – particularly considering the tool
attach example. However, as we further outline, our interface re-
lies on dedicated remote-procedure calls with a simple registration
mechanism. In addition, we provide reliable Unique IDentifiers
(UIDs) generation handled by MPI across jobs. We believe that
this enables more opportunities for MPI to rely on an alternative
networking facility (overlay network) to generate out-of-band mes-
sages. This state of things is outlined in the rest of this paper but
also in the future work, backing up the interest of keeping some of
these facilities in the MPI vicinity. Besides, this does not exclude
that some of this support is ultimately provided by PMIx as the
standard evolves. There are similarities between the overlay net-
work and the Distributed Virtual Machine (DVM) in the reference
PMIX implementation2 featuring an “overlay runtime”. In our case,
we focus on (1) set discovery (size, command, and UIDs) and (2)
RPCs between these processes – nothing more. The DVM itself acts
as a complete scheduler handling allocations and implementing
PMIx in a portable manner over various schedulers having varying
PMI(x) support. Indeed, the PMI ABI is still evolving and leads to
challenges in contexts such as containers[13, 26] requiring the PMIx
runtime to act as a mediation layer with a potentially unknown
host system and PMI version.

1https://pmix.org
2https://openpmix.github.io/

Our work falls in the gray area of process management for MPI.
Recently MPI has provided extended features to gather and struc-
ture process groups: MPI Sessions. Meanwhile, the support to build
such groups remains implementation-dependent. In most cases, one
uses the PMI as the de-facto standard for wiring up. Yet, PMIx is still
evolving and becoming complex in some aspects, possibly due to
the standardization constraints: being exhaustive and future-proof.
Not all systems immediately support PMIx: it leads to a dependency
between the support infrastructure and some MPI features. In this
paper, we outline the interest of having (1) UIDs and (2) RPCs, both
missing in PMIx, as an alternative to Put/Get which are sensitive
to remote states. We also show that with a relatively simple inter-
face and routing, one could ensure inter-job connectivity mostly
independent from PMIx.

4 CONTRIBUTION
In the rest of this paper, we introduce an MPI out-of-band con-
trol message interface relying on routed messages over an over-
lay network. This facility enables the MPC runtime to start fully-
disconnected and supports extended service discovery and subse-
quent wiring between all the jobs of a given user. To do so, we
introduce the notion of process unique identifier (UID) at the ma-
chine level, outlining how we construct such value. We also present
the overlay network and its routed RPC interface. Currently, this
interface supports on-demand connections, liveliness assessment,
connectivity dumps, and process discovery. The interest of this
approach is to enable cross-job interaction in MPI, (1) discovering
remote peers and (2) sending routed RPCs to them in order to estab-
lish high-performance links independently from the remote state
(enabling client-server model).

5 OVERLAY NETWORK
In this section, we present the overlay network providing the core
features of this paper, on-demand connectivity, and process discov-
ery. We start by mentioning the previous implementation in MPC.
Then we describe how this support was externalized and extended
in a distinct component. On the implementation side, we motivate
the need for unique identifiers, introducing our generation mecha-
nism and describing how it propagates in MPI matching handles’
internal IDs. On the connectivity side, we comment on the wiring-
up protocol and the retained topology inspired by peer-to-peer
networks. Eventually, we describe the corresponding application
programming interface based on simple remote procedure calls
(RPCs) with timeout support.

5.1 Legacy On-Demand in MPC
Before we elaborate on the new features, it is interesting to give de-
tails on what was previously present inside MPC for the on-demand
mechanism. Indeed, MPC already had support for routed messages,
which means that if a given process received a message for a remote
process: it would send it over using a simple distance metric. For
this purpose, and as illustrated in Figure 5, when MPC started up,
it relied on the Process Management Interface (PMI) to start a set
of static routes according to a configurable topology (ring, k-mesh,
k-torus). As the distance metric retained was simply the absolute
one-dimensional distance, MPC enforced a “ring” in all topologies
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Figure 5: MPC connectivity dump after the MPI_Init barrier
(8-tree). In red static routes (ring) in black routes created on-
demand thanks to routed “control-messages”.

to avoid local routing minimums. Over this mechanism, we relied
on a feature internally called control messages; it consisted of small
messages routed through the network. These were used for on-
demand, RDMA emulation, and internal driver negotiation (RDMA
buffer resizing). However, they suffered from several limitations.
First, only eager messages were routed due to lack of matching –
prescribing the rendez-vous protocol. Second, due to high-speed
networks it was cumbersome to do error checking in terms of con-
nectivity, unlike what is handled portably by the operating system
with a connected protocol such as TCP. Eventually, in MPC the
process identifier was the PMI rank, leading to overlap between
multiple jobs due to its linear nature – preventing any form of
inter-job connect/accept.

5.2 Networking Topology
To make this feature more reliable, we externalized it over a dedi-
cated out-of-band network using TCP. Thanks to this connected pro-
tocol, node failures are easier to detect than over a high-performance
network. Indeed, the Operating System (OS) provides support for
handling remote failure (potentially trough internal timeout mech-
anism) and no additional code is needed to handle it at implementa-
tion level. Achieving such support over unreliable protocols and/or
devices implementing OS bypass requires much more careful han-
dling and is harder to maintain on multiple kinds of fabrics whereas
TCP is widely available.

Moreover, instead of using direct connections, we implemented
a topology inspired by peer-to-peer networks using the kademlia
topology[17]. A given process connects to the following process
rank with a power of two strides. Such a network has the propriety
of providing a logarithmic distance, an aspect of interest in our case.
Moreover, kademlia defines several mitigations for the liveliness of
peers as encountered in a peer-to-peer network.

As far as the implementation is concerned, we start a listening
TCP socket accepting inbound connections inside each MPI process.
Then we store its Internet Protocol (IP) address inside the Process
Management Interface (PMI). Each process proceeds to launch the
kademlia topology using the keys from the PMI3. Once this phase
is done, the job can now run fully without using the PMI as the
network is now transitively connected. In this process, the root
process (PMI rank 0) has a special role. Indeed, it is also in charge

3We have plans to implement an independent bootstrapping using the root-file in the
users-home for cases where the PMI is not available.

of joining the other jobs. For this purpose, we define the notion of
launch process-set. A launch process-set is a group of processes
gathered in a given job (matching an allocation one-to-one). It is
important to note that MPI Sessions have brought in MPI the notion
of process-set, which is also a group of MPI processes with a given
label (URL). In our case, given our current implementation these
two concepts are only partially interleaved as MPC runs in thread-
based and therefore our sets are made of UNIX processes, not MPI
processes. Yet, in the process-based case, the launch process-set can
be exposed as a process-set as envisioned by the MPI Standard due
to the identity between UNIX processes (what is launched by the
batch-manager) and MPI Processes what communicates in MPI. In
the rest of this paper we use the notion of process-set but this small
dichotomy caused by MPC’s peculiarities with sets from actual MPI
Sessions remains.

Each set has a unique identifier computed by the runtime. To do
so, we rely on a shared file system to acquire a lock file. This is done
by trial and error by trying to create a file in a dedicated directory
with a random UID. In prevision for machine-wide multi-user sets,
this UID is composed partially of the UNIX user-id (over 20 Most
Significant Bits (MSB)) with a random part for the local ID (remain-
ing 12 bits). If the creation succeeds and the content matches the
expected value (to avoid possible races), the set is attributed to the
given UID. The advantage of such an approach is that listing all
process sets is simply doing a listing of the files present in this
directory. Besides, as far as the cleanup of this directory is con-
cerned, jobs delete their files when leaving, and for the specific case
of crashed jobs, any job failing to contact a given process-set root
(which corresponding IP address is inside the file) simply deletes
the corresponding file after multiple connection attempts. We then
have a kademlia sparse topology inside the job, and between job
roots, we have a directory structure enabling inter-job discovery.
By carefully placing this directory in the user’s home with correct
access rights, we can ensure (1) the security of the IP and (2) pass-
word protection of the various server endpoints thanks to login
information embedded in the set file. This allows a given process to
potentially reach processes from other jobs. The routing protocol
is very simple. If the destination process set is different, then the
message is first sent to the root process of the local set. Inside the
root process, a connection is initiated to the destination root in the
remote set, and the message is forwarded. Inside sets, the routing
uses the kademlia metric to reach the ranks. Thanks to this nested
routing, any process is now able to exchange routed messages to
other processes on the machine, independent from their respective
jobs. Whether the destination process is in the same set can be
queried solely from the UID – as detailed in the following section.

5.3 Unique Identifiers (UIDs)
PMIx is lacking of the notion of unique identifier, enabling machine-
wide connectivity, such descriptor has to be reconstructed from
PMI ranks and name-spaces identifiers. As we further develop, we
designed our overlay network to achieve such support, providing
compact addresses to each MPI process. This leads to a behavior
mimicking one of Unique Resource Locators (URLs). A group of pro-
cess is then given a unique name (URL) which is then addressable
to target underlying process ranks as sub-resources (leading to an
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Figure 6: Illustration of UID nesting in MPC.

URI). The direct consequence is MPC’s ability to contact arbitrary
processes in the MPI_UNIVERSE. We even implemented universe
point-to-point MPI messages which can take a UID instead of an
MPI process rank and communicator. UIDs are built simply by
changing all references to the process ID (the actual UNIX process,
not the MPI one, MPC being thread-based) inside MPC from 32 bits
to 64 bits. As presented in Figure 6, we inserted the set identifier as
constructed in the previous section on the 32 MSB. The remaining
32 bits are the regular linear rank provided by the PMI. The result,
transitively to the unique nature of the set identifier is the process
rank being unique on the whole machine – becoming a UID. More-
over, having a 64 bits process rank is also having the 32 bits set.
Consequently, this rank alone is sufficient for end-to-end routing
permitting its use as an URI (Unique Resource Identifier).

This UID in MPC acts as an URI enabling the resolution of any
UNIX process. However, as MPC is a thread-based MPI, we left the
MPI rank unchanged, still 32 bits. First, it is not an opaque type
in MPI leaving no freedom to change it. And second, because it
would not have been so useful. Indeed, as outlined by MPI sessions,
everything is encapsulated as you always need a communicator to
communicate. And transitively, if the communicator identifier is
unique, the communication can be sand-boxed to a given group,
enabling precise MPI process rank resolution. This is how MPI
sessions operate as they do not define an endpoint. The process
is such as having “internally” a rank given by the PMI which typ-
ically maps linear ranks to UNIX processes. And it is only when
the communicator is created from the group that the sessions end
up with an endpoint – thanks to the internal communicator ID
part of the matching logic. The sessions handle has no distributed
encapsulation role, and does not define an endpoint, its internal
ID distinguishes between local sibling handles to implement error-
handling – intermixing sessions handles is forbidden. As a con-
sequence, two distinct MPI Sessions instantiating mpi://WORLD,
would not be able to do a connect/accept between each other as
doing so with intersecting communicators is forbidden (here they
are even equal in terms of underlying group). The reason is that
the support group of the communicator refers to the actual process
rank of the MPI process and that in all cases even if hosting a hun-
dred sessions, a process only has one “internal” rank in use inside
its group descriptor. Conversely, if the MPI session would create
a new endpoint (with its own UID), communication and grouping
including between local endpoints would be feasible.

Getting back to MPC to enable this encapsulation from the end-
point (UNIX process in our case) to the communicator, we had to

update communicator ID generation. Indeed, to support connec-
t/accept we have to ensure all communicator IDs were different. To
do so, we simply added the set identifier at its beginning, promot-
ing the ID to 64 bits as shown in Figure 6. This way, the intercom
resulting from a connect/accept can be built directly from the group
representation as serialized from the remote process – a communi-
cator having a support group relying on UIDs (set and rank encoded
on 64 bits). Moreover, if the two communicators are merged, the
corresponding UIDs can be directly merged leading to a group
spanning two jobs without any renumbering or indirection. The
MPI process rank is then indexing members of the support group.
Moreover, this has the advantage of factorizing the code for on-
demand connectivity inside and between jobs. Indeed, the UID and
the corresponding routed-RPC can be used for all processes on the
machine thanks to a common name-space. The Remote Procedure
Calls open the way for one-sided connectivity to remote processes
whereas PMI Put/Get is only limited to two-sided connectivity.

Figure 7: Sequence diagram for routed RPCs on the overlay
network.

To route Remote-Procedure Calls (RPCs), we rely on a simple
protocol shown in Figure 7. First, each RPC is given a unique local
identifier thanks to a linearly increasing 64 bits value. This value
is sent alongside the message to enable response matching. Both
outgoing and incoming messages share the same routing with a
different message type (request and response). On the receiver side,
messages to be processed are pushed in a list for asynchronous
processing by a helper thread. This enables the decoupling of the
routing engine by delaying processing and avoiding deadlocks.
Sender-side, the process waits for a response with the expected
matching identifier. To support failed and unreachable processes,
a timeout is implemented during the wait for the response. This
timeout is set to 30 seconds to avoid false triggers. Routed messages
have a Time-To-Live (TTL) to avoid infinite loops in the routing net-
work given possible node failure. Overall, the overlay network (1)
routes RPC messages and their responses and (2) handles potential
failures on the network thanks to timeouts.
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6 OVERLAY COMMANDS AND UTILITIES
Thanks to this RPC mechanism, we implement several query com-
mands allowing us to perform remote operations while retrieving
potential return values. Indeed, due to their one-sided nature RPCs
allow processing to be launched on the remote node unlike Puts and
Gets which necessarily require a form of symmetry in the opera-
tions – this is particularly helpful when connecting to a remote MPI
process. In MPC we implemented the following RPC operations to
support both process discovery and dynamic connectivity:

• Request set info: for a given set retrieve information on
peers (count and identifiers);

• Ping: send a message to compute roundtrip time (used for
liveliness assessment and benchmark);

• On demand: invoke remote callback to perform on-demand
connections;

• Connectivity: dump the overlay network topology for the
given UID;

• Communicator Information: request serialization of the
group of a given remote communicator;

• Service registration: implement service lookup and regis-
tration over the overlay network.

In complement, a simple interface allows sets and UIDs manip-
ulation, for example, to retrieve a given set. As far as RPCs are
concerned, they are exposed through dedicated functions and rely
on a common RPC infrastructure, implementing the wiring pro-
tocol. The runtime can also register arbitrary RPCs to implement
side-channel control messages, these are used, for example, to im-
plement emulated RDMAs.

Figure 8: Overlay network topology for three commands in-
volving 512 processes plus mpc_set (dot in the middle con-
nected to the root of each job to run connectivity com-
mands).

$ mpc_se ts s e t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SET ID : 4129295386 | SET ID : 3289965661 |
| SIZE : 512 | SIZE : 512 |
| CMD : . / IMB−MPI1 | CMD : . / IMB−MPI1 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SET ID : 1837669245 | SET ID : 394267674 |
| SIZE : 512 | SIZE : 1 |
| CMD : . / IMB−MPI1 | CMD : mpc_se ts s e t s |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 1: Sample output from the “mpc_sets sets” com-
mand.

We implemented a command-line interface called mpc_set to
offer process-set listing capabilities. This command enables the
dumping of the overlay network topology while listing all UIDs
involved, set sizes, and associated commands. It is implemented by
joining the overlay network as a regular set; providing the ability
to emit commands to the various other sets present on the machine.
The topology dump of Figure 8 is done by sending a connectivity
command to all members of all sets from the mpc_set instance. In
this output, the command line program can be seen in the middle as
connected to the three jobs wired with the kademlia topology. As
shown in Listing 1, a textual output is also available to list currently
running sets and their respective commands.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our overlay net-
work at scale, first assessing its scalability. Second, we perform
some routed RPCs benchmarking, and eventually, we compare this
throughput to PMIx on the same system. Following tests were done
on a prototype cluster. It features bi-socket AMD Rome CPUs (AMD
EPYC 7H12 64-Core Processor) for a total of 128 cores per node
(256 threads), and the interconnect consists of Bull Exascale Inter-
connect (BXI) V1.3 adapters. The cluster runs on slurm 20.11.8 and
relies on PMIx 3.1.5 (gitedebb24) without UCX support[19] as we
run on Portals 4 hardware.

7.1 Topology Scalability
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Figure 9: Minimum, Maximum and average (error-bars)
overlay network connectivity degree for various scales.

In Figure 9, we present the evolution of the overlay network
vertex degree in function of the number of involved MPI processes.
As expected, this degree follows a base two logarithm. Overall,
this shows that the overlay network practically limits connectivity
requirements. It has an expected maximum of 32 connections per
process for the maximum number of ranks supported by MPI due to
the integer limitation of the rank encoding only up to two billions
(2,147,483,647).
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7.2 Wiring-up Performance
It is not trivial to fairly compare PMIx and our RPC approach for
wiring-up. Indeed, PMI is generally based on a collective to perform
the dissemination. Therefore, Puts are emitted, committed, and
eventually, a disseminating Fence propagates them to the various
nodes. After this step, subsequent Get will be able to retrieve the
given keys and associated values. Whereas, for routed RPCs, no
collective is involved. For most networks, the process willing to
connect sends a message with associated connection information
as a parameter to the remote. Once the message arrives, the remote
back-connects to the initiator. This process ensures the remote is
connected when the RPC returns at the initiator side. Thus, connec-
tivity information are sent when initiating a connection without
performing a collective.

To compare data exchanges, we devised a simple benchmark
trying to do equivalent data exchanges using the two interfaces.
This benchmark measures the time between two PMI Barriers. In
the PMIx (V3) benchmark, each process rank does the following:

(1) PMI Fence (non-disseminating)
(2) Timer Start
(3) Put
(4) Commit
(5) PMI Fence (disseminating or not)
(6) Get a subset of Values
(7) PMI Fence (non-disseminating)
(8) Timer End

For the routed RPC case on the overlay network we do the
following, trying to achieve approaching data-exchanges with the
given interface:

(1) PMI Fence (non-disseminating)
(2) Timer Start
(3) Callback RPC Connection info to a subset of Processes
(4) PMI Fence (non-disseminating)
(5) Timer End

The PMI fences used in both cases allow for comparing the two
approaches which do not share the same synchronous semantic –
they are expected to produce the same overhead in both approaches.
On the data-exchange side, each node retrieves (or sends) its con-
nection info to a given number of processes mimicking wiring up.
We then propose the overall per-connection cost as simple figure
of merit. For example, if n processes spent a total of T seconds
in the timed section to individually wire-up k processes, we can
deduce that average job-wide cost of a given connection Cc is such
as Cc = T

n∗k .
Figure 10 presents a comparison of these two test-cases up to

4096 cores by doing a ratio of the average job-wide cost. Lower than
100% means MPC is faster, and conversely higher is slower. The
measure is done with different connectivity ratios from 1% (with at
least two connections) up to 100% meaning fully-connected. The
routed RPCs tend to be more efficient (up to 20 times faster) for
lower connectivity rates up to 20%. Opposingly, for higher con-
nectivity, routed RPCs are inefficient. The reason for this lies in
the implementation differences. PMIX does the data-dissemination
inside a collective operation (analogous to Allgather), whereas the
overlay network emits one single RPC per on-demand, leading to a
quadratic complexity. It is then clear that the overlay network does
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Figure 10: Ratio of MPC overlay’s figure of merit Cc over
PMIx’s for our Put/Get testcase from 0 to 4096 processes
with a disseminating fence. Both axes are in logscale due to
the large dynamic (base 10 vertically and 2 horizontally).

not take advantage of aggregation opportunities to reduce the num-
ber of operations. However, thanks to the logarithmic diameter of
the routing network, the number of connections remains constant,
reducing the networking overhead. For these reasons, routed RPCs
are more efficient when the collective cost is not amortized by the
number of participants (here endpoints to connect to). Moreover,
in our measurements, we saw an important performance improve-
ment in PMIx over 2500 processes, reasons for this abrupt variation
is still to be explained.
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Figure 11: Ratio of MPC overlay’s figure of merit Cc over
PMIx’s for our Put/Get testcase from 0 to 1024 processes
without a disseminating fence. Both axes are in logscale due
to the large dynamic (base 10 vertically and 2 horizontally).
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As PMIx supports retrieving values without a disseminating
fence4, we repeated our measurements in this updated configura-
tion in Figure 11. In this updated test, the runtime then has to fetch
each value individually inside the respective servers. One can see
that PMIx takes advantage of an SHM memory segment as up to
128 processes (node size) performance is steady. However, when
going out of the node, the performance quickly decreases for all
connectivity ratios. This, up to a point where the runtime encoun-
ters some issues (certainly due to request contention) – preventing
us to run up to 4096 processes. Interestingly, this new configuration
which is not how PMIx is to be used for performance 5, outlines
how PMIx could take advantage of our routed RPC approach to im-
prove its point-to-point resolution support. Indeed, in the context
of horizontal connectivity the point-to-point pattern may become
prevalent as disseminating necessarily means there is a underlying
group to be used (practically processes from the same allocation).
In the case of completely unrelated jobs, this synchronous model
does not hold anymore – justifying our interest for point-to-point
queries.

Eventually, to correctly contrast these results, it is important
to mention that we solely measured the data-exchange phase and
that the overall picture is larger. Indeed, setting up the overlay
network has a cost by itself and unlike PMIx which can potentially
factorize it, being external to the job (Slurm or Orted DVM), our
approach repeats it at each launch. It means that optimally the
overlay should be either initially sparser or externalized in system
daemons to provide the most efficient launch time which is an
important factor. As of now, the overlay is created synchronously
at the start, we are working on connecting lazily to limit its creation
cost and dynamically adapting the network diameter over time.

7.3 RPC Latency
When using the overlay network for control messages, RPCs are
routed which means that each process has privileged neighbors as
per the underlying routing topology. As we use a kademlia-inspired
topology, a given process is connected to the following powers of
two in the network. As per Figure 9, with 3200 MPI processes the
overlay degree is twelve. It means, by looking at Figure 12 twelve
nodes are one hop away. It can be seen that despite routing being
involved the logarithmic diameter of the kademlia network pro-
vides bounded latency and while running over 3200 processes (or
25 Nodes), the worst average is 1.29 milliseconds, and the global
average is 0.65 millisecond. These values are of course higher than
what could be expected using the high-performance network, how-
ever, they remain acceptably low. Indeed, the choice for TCP here is
a clear trade-off for portability over performance, this support net-
work is required on all target systems as side-channel independent
from the fabric type used for MPI messaging.

8 CONCLUSION
As outlined in Section 3, we motivated that MPI should consider the
composition of programs as a key element to handle the increasing
pressure from the underlying hardware. This supposes two things,
(1) efficient and reliable job/process discovery as we covered in this

4We still call a fence to ensure values are Put before the Get.
5A disseminating fence is historically the standard way, it can also be non-blocking
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Figure 12: RPC latency (roundtrip) from process 0 to all pro-
cesses when running over 4096 processes (32 Nodes). Values
are averaged 500 times to outline underlying topology.

paper, and (2) stateless client-server patterns (RPCs) which are not
yet available in MPI6. Focusing on service discovery aspects, we
introduced an overlay network in charge of providing wiring-up
capabilities to MPI programs, not only inside but also between jobs,
this thanks to a routing mechanism. This enables job discovery at
the machine level for a given user. Its main purpose is to guarantee
the availability of the publish/lookup mechanism independent of
the underlying batch manager or system support. We have shown
how routed RPCs over the overlay network were able to improve
over the PMIx wiring substrate under some conditions (limited
connectivity).

Moreover, we discussed how Unique IDentifiers for MPI pro-
cesses would make connect/accept more robust thanks to a direct
encoding of communicator support groups internal to the MPI run-
time. Having an endpoint semantic inside of sessions would enable
such connectivity without the risk of an internal endpoint clash.
More generally, extending the meaning of the rank, or providing
an abstraction matching the semantics of an URI would improve
MPI’s service support by providing out-of-job connectivity to MPI
processes. As of now, MPI sessions opened two ways to creating
communicators from labels (which are practically URL). However,
the standard forbids communication between such sessions in its
4.0 iteration. Whether the addressable element should be the Group
or the MPI Process itself is an open question. Yet we see it as crucial
to enable what we described as composition patterns to overcome
the complexity barrier faced by HPC programs through divide and
conquer. In this work, we have shown that with a simple abstraction
and limited dependencies (only TCP) an MPI runtime could em-
bed this support to enable its portability. Second, we demonstrated
that PMIx could take advantage of routed RPCs to enhance its per-
formance when not relying on disseminating fences, for example,
when addressing remote process groups.
6MPI Connect/Accept supposes a remote state for disconnection as all remote commu-
nicator members have to connect and disconnect collectively.
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Overall, we consider that enabling MPI to operate horizontally
in a more dynamic environment, including persistent service is one
of the main challenge the standard has to face in the near future.
Indeed, it now has competitors which do feature bare-metal per-
formance, seamlessly leveraging high-speed interconnects. Given
these infrastructure are much more suitable for composition, we
think that they will first be collocated with MPI and then they may
progressively replace it as the associated interface and runtimes
reach enough momentum. Sessions did set the base for addressing
but support for operations, discovery, persistence between theses
sessions is becoming increasingly needed.

9 FUTUREWORK
In this paper we focused ourselves on process discovery and wiring.
We think that the overlay network in the context of MPI has much
more to offer. This section, quickly list various ideas that we con-
sider as future work.

Fault tolerance: TCP’s connected nature facilitates the imple-
mentation of a reliable “ping” commands able to put up with failed
processes. The overlay-network can then be used as a portable
support for implementing fault-tolerance mechanisms;

Routed collectives: some programs do expensive collectives
punctually at the start and then rely on a relatively sparse communi-
cation matrix, but the given endpoints usually remain connected. If
such punctual collective could be routed it would avoid connecting
many processes for nothing;

Out of band: as the overlay network is based on TCP it can
easily accommodate for transient clients. This opens the way for
a wide range of MPI support tools, from monitoring MPI using
the tools interface[20, 23] to sending commands to the application
(steering, specific queries, ...);

Hybrid topology: we also want to allow routing over the high-
speed network endpoints, practically reviving the control messages
previously present in MPC (section 5.1). With the advantage of
relying on more efficient hardware, potentially increasing RPC
throughput while reducing opportunistically the network diameter.
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